关于数论中的互质数的最大不能组合数
最近看数论,转头重新思考了这题,参考了下论文和lrj的黑书,重新证明一遍,做个笔记。 例题:HDOJ 1792 A New Change Problem 题意:给定A和B,A和B互质,求最大不能组合数,和不能组合数的个数。 基础知识: $$\gcd(A, B) = 1 \Rightarrow \operatorname{lcm}(A, B) = AB$$ 剩余类,把所有整数划分成$m$个等价类,每个等价类由相互同余的整数组成 任何数分成$m$个剩余类,分别为 $mk,mk+1,mk+2,\cdots,mk+(m-1)$ 分别记为$\{0(\mod m)\},\{1(\mod m)\}$ 而$n$的倍数肯定分布在这$m$个剩余类中 因为$\gcd(m,n)=1$,所以每个剩余类中都有一些数是$n$的倍数,并且是平均分配它的旁证,可见HDOJ 1222 Wolf and Rabbit 设 $k_{min} = \min \{ k \mid nk \in \{i (\mod m)\} \},~ i \in [0, m)$ 则 $nk_{min}$ 是$\{i (mod m)\}$中$n$的最小倍数。特别的,$nm \in \{0 (\mod m)\}$ $nk_{min}$ 是个标志,它表明$\{i (\mod m)\}$中$nk_{min}$ 后面所有数,即$nk_{min} + jm$必定都能被组合出来 那也说明最大不能组合数必定小于$nk_{min}$ 我们开始寻找$\max\{ nk_{min} \}$ $\operatorname{lcm}(m, n) = mn$,所以很明显$(m-1)n$是最大的...